|
Control Systems and Reinforcement Learning
Hardback
Main Details
Title |
Control Systems and Reinforcement Learning
|
Authors and Contributors |
By (author) Sean Meyn
|
Physical Properties |
Format:Hardback | Pages:450 | Dimensions(mm): Height 260,Width 180 |
|
Category/Genre | Econometrics Probability and statistics Algorithms and data structures |
ISBN/Barcode |
9781316511961
|
Classifications | Dewey:006.31 |
---|
Audience | |
Illustrations |
Worked examples or Exercises
|
|
Publishing Details |
Publisher |
Cambridge University Press
|
Imprint |
Cambridge University Press
|
Publication Date |
9 June 2022 |
Publication Country |
United Kingdom
|
Description
A high school student can create deep Q-learning code to control her robot, without any understanding of the meaning of 'deep' or 'Q', or why the code sometimes fails. This book is designed to explain the science behind reinforcement learning and optimal control in a way that is accessible to students with a background in calculus and matrix algebra. A unique focus is algorithm design to obtain the fastest possible speed of convergence for learning algorithms, along with insight into why reinforcement learning sometimes fails. Advanced stochastic process theory is avoided at the start by substituting random exploration with more intuitive deterministic probing for learning. Once these ideas are understood, it is not difficult to master techniques rooted in stochastic control. These topics are covered in the second part of the book, starting with Markov chain theory and ending with a fresh look at actor-critic methods for reinforcement learning.
Author Biography
Sean Meyn is a professor and holds the Robert C. Pittman Eminent Scholar Chair in the Department of Electrical and Computer Engineering, University of Florida. He is well known for his research on stochastic processes and their applications. His award-winning monograph Markov Chains and Stochastic Stability with R. L. Tweedie is now a standard reference. In 2015 he and Prof. Ana Busic received a Google Research Award recognizing research on renewable energy integration. He is an IEEE Fellow and IEEE Control Systems Society distinguished lecturer on topics related to both reinforcement learning and energy systems.
Reviews'Control Systems and Reinforcement Learning is a densely packed book with a vivid, conversational style. It speaks both to computer scientists interested in learning about the tools and techniques of control engineers and to control engineers who want to learn about the unique challenges posed by reinforcement learning and how to address these challenges. The author, a world-class researcher in control and probability theory, is not afraid of strong and perhaps controversial opinions, making the book entertaining and attractive for open-minded readers. Everyone interested in the "why" and "how" of RL will use this gem of a book for many years to come.' Csaba Szepesvari, Canada CIFAR AI Chair, University of Alberta, and Head of the Foundations Team at DeepMind 'This book is a wild ride, from the elements of control through to bleeding-edge topics in reinforcement learning. Aimed at graduate students and very good undergraduates who are willing to invest some effort, the book is a lively read and an important contribution.' Shane G. Henderson, Charles W. Lake, Jr. Chair in Productivity, Cornell University 'Reinforcement learning, now the de facto workhorse powering most AI-based algorithms, has deep connections with optimal control and dynamic programing. Meyn explores these connections in a marvelous manner and uses them to develop fast, reliable iterative algorithms for solving RL problems. This excellent, timely book from a leading expert on stochastic optimal control and approximation theory is a must-read for all practitioners in this active research area.' Panagiotis Tsiotras, David and Andrew Lewis Chair and Professor, Guggenheim School of Aerospace Engineering, Georgia Institute of Technology
|