Hyperfunctions on Hypo-Analytic Manifolds (AM-136), Volume 136

Paperback / softback

Main Details

Title Hyperfunctions on Hypo-Analytic Manifolds (AM-136), Volume 136
Authors and Contributors      By (author) Paulo Cordaro
By (author) Francois Treves
SeriesAnnals of Mathematics Studies
Physical Properties
Format:Paperback / softback
Pages:378
Dimensions(mm): Height 254,Width 197
Category/GenreGeometry
ISBN/Barcode 9780691029924
ClassificationsDewey:516.07
Audience
Professional & Vocational
Tertiary Education (US: College)

Publishing Details

Publisher Princeton University Press
Imprint Princeton University Press
Publication Date 23 October 1994
Publication Country United States

Description

In the first two chapters of this book, the reader will find a complete and systematic exposition of the theory of hyperfunctions on totally real submanifolds of multidimensional complex space, in particular of hyperfunction theory in real space. The book provides precise definitions of the hypoanalytic wave-front set and of the Fourier-Bros-Iagolnitzer transform of a hyperfunction. These are used to prove a very general version of the famed Theorem of the Edge of the Wedge. The last two chapters define the hyperfunction solutions on a general (smooth) hypo-analytic manifold, of which particular examples are the real analytic manifolds and the embedded CR manifolds. The main results here are the invariance of the spaces of hyperfunction solutions and the transversal smoothness of every hyperfunction solution. From this follows the uniqueness of solutions in the Cauchy problem with initial data on a maximally real submanifold, and the fact that the support of any solution is the union of orbits of the structure.

Author Biography

Francois Treves is the Robert Adrain Professor of Mathematics at Rutgers University. Paulo D. Cordaro is Associate Professor of Mathematics at the University of Sao Paulo in Brazil.