The Ambient Metric (AM-178)

Paperback / softback

Main Details

Title The Ambient Metric (AM-178)
Authors and Contributors      By (author) Charles Fefferman
By (author) C. Robin Graham
SeriesAnnals of Mathematics Studies
Physical Properties
Format:Paperback / softback
Pages:128
Dimensions(mm): Height 235,Width 152
ISBN/Barcode 9780691153148
ClassificationsDewey:516.35
Audience
Tertiary Education (US: College)
Professional & Vocational

Publishing Details

Publisher Princeton University Press
Imprint Princeton University Press
Publication Date 4 December 2011
Publication Country United States

Description

This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincar metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincar metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincar metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established. A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.

Author Biography

Charles Fefferman is the Herbert E. Jones, Jr., '43 University Professor of Mathematics at Princeton University. C. Robin Graham is professor of mathematics at the University of Washington.

Reviews

"[T]his careful exposition has been well worth the wait!"--Michael G. Eastwood, Mathematical Reviews Clippings