Discrete Choice Methods with Simulation

Hardback

Main Details

Title Discrete Choice Methods with Simulation
Authors and Contributors      By (author) Kenneth E. Train
Physical Properties
Format:Hardback
Pages:400
Dimensions(mm): Height 229,Width 152
Category/GenreEconometrics
Probability and statistics
ISBN/Barcode 9780521766555
ClassificationsDewey:003.56
Audience
Professional & Vocational
Edition 2nd Revised edition
Illustrations 17 Tables, unspecified; 46 Line drawings, unspecified

Publishing Details

Publisher Cambridge University Press
Imprint Cambridge University Press
Publication Date 6 July 2009
Publication Country United Kingdom

Description

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. This second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.

Author Biography

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.