Analysis: An Introduction

Paperback / softback

Main Details

Title Analysis: An Introduction
Authors and Contributors      By (author) Richard Beals
Physical Properties
Format:Paperback / softback
Pages:272
Dimensions(mm): Height 252,Width 177
Category/GenreCalculus and mathematical analysis
ISBN/Barcode 9780521600477
ClassificationsDewey:515
Audience
Tertiary Education (US: College)
Professional & Vocational
Illustrations Worked examples or Exercises; 11 Line drawings, unspecified

Publishing Details

Publisher Cambridge University Press
Imprint Cambridge University Press
Publication Date 13 September 2004
Publication Country United Kingdom

Description

This self-contained text, suitable for advanced undergraduates, provides an extensive introduction to mathematical analysis, from the fundamentals to more advanced material. It begins with the properties of the real numbers and continues with a rigorous treatment of sequences, series, metric spaces, and calculus in one variable. Further subjects include Lebesgue measure and integration on the line, Fourier analysis, and differential equations. In addition to this core material, the book includes a number of interesting applications of the subject matter to areas both within and outside the field of mathematics. The aim throughout is to strike a balance between being too austere or too sketchy, and being so detailed as to obscure the essential ideas. A large number of examples and 500 exercises allow the reader to test understanding, practise mathematical exposition and provide a window into further topics.

Author Biography

Richard Beals is James E. English Professor of Mathematics at Yale University. He has also served as Professor at the University of Chicago and visiting Professor at the University of Paris, Orsay. He is the author of over 100 research papers and monographs in partial differential equations, differential equations, functional analysis, inverse problems, mathematical physics, mathematical psychology and mathematical economics.

Reviews

'The self-contained text, suitable for advanced undergraduates, provides an extensive introduction into mathematical analysis, from the fundamentals to more advanced material.' Zentralblatt fur Didaktik der Mathematik