To view prices and purchase online, please login or create an account now.



Modern Communication Systems Using MATLAB, International Edition

Paperback

Main Details

Title Modern Communication Systems Using MATLAB, International Edition
Authors and Contributors      By (author) Masoud Salehi
By (author) John Proakis
By (author) Gerhard Bauch
Physical Properties
Format:Paperback
Pages:640
Dimensions(mm): Height 236,Width 188
Category/GenreElectrical engineering
ISBN/Barcode 9781111990176
ClassificationsDewey:621.38216
Audience
Tertiary Education (US: College)
Edition International Edition

Publishing Details

Publisher Cengage Learning, Inc
Imprint Nelson Engineering
Publication Date 1 January 2012
Publication Country United States

Description

Featuring a variety of applications that motivate students, this book serves as a companion or supplement to any of the comprehensive textbooks in communication systems. The book provides a variety of exercises that may be solved on the computer using MATLAB. By design, the treatment of the various topics is brief. The authors provide the motivation and a short introduction to each topic, establish the necessary notation, and then illustrate the basic concepts by means of an example.

Author Biography

Gerhard Bauch received the Dipl.-Ing. and Dr.-Ing. degree in Electrical Engineering from Munich University of Technology (TUM) in 1995 and 2001, respectively, and the Diplom-Volkswirt degree from FernUniversitaet Hagen in 2001. In 1996, he was with the German Aerospace Center (DLR), Oberpfaffenhofen, Germany. From 1996-2001 he was member of scientific staff at Munich University of Technology (TUM). In 1998 and 1999 he was visiting researcher at AT&T Labs Research, Florham Park, NJ, USA. In 2002 he joined DoCoMo Euro-Labs, Munich, Germany, where he has been managing the Advanced Radio Transmission Group. In 2007 he was additionally appointed Research Fellow of DoCoMo Euro-Labs. From 2003-2008 he was an adjunct professor at Munich University of Technology. In 2007 he was a visiting professor teaching courses at the University of Udine in Italy and at the Alpen-Adria-University Klagenfurt in Austria. Since February 2009 he has been a full professor at the Universitat der Bundeswehr Munich. Affiliation: University of California, San Diego and Northeastern University Bio: Dr. John Proakis is an Adjunct Professor at the University of California at San Diego and a Professor Emeritus at Northeastern University. He was a faculty member at Northeastern University from 1969 through 1998 and held several academic positions including Professor of Electrical Engineering, Associate Dean of the College of Engineering and Director of the Graduate School of Engineering, and Chairman of the Department of Electrical and Computer Engineering. His professional experience and interests focus in areas of digital communications and digital signal processing. He is co-author of several successful books, including DIGITAL COMMUNICATIONS, 5E (2008), INTRODUCTION TO DIGITAL SIGNAL PROCESSING, 4E (2007); DIGITAL SIGNAL PROCESSING LABORATORY (1991); ADVANCED DIGITAL SIGNAL PROCESSING (1992); DIGITAL PROCESSING OF SPEECH SIGNALS (2000); COMMUNICATION SYSTEMS ENGINEERING, 2E (2002); DIGITAL SIGNAL PROCESSING USING MATLAB V.4, 3E (2010); CONTEMPORARY COMMUNICATION SYSTEMS USING MATLAB, 2E (2004); ALGORITHMS FOR STATISTICAL SIGNAL PROCESSING (2002); FUNDAMENTALS OF COMMUNICATION SYSTEMS (2005). Masoud Salehi received BS from Tehran University and MS and PhD from Stanford University, all in Electrical Engineering. Before joining Northeastern University, he was with the Electrical Engineering Departments at Isfahan University of Technology and Tehran University both in Iran. During 1988-1989 he was a visiting professor at the Information and Communication Theory Research Group, Eindhoven University of Technology, The Netherlands, where he did research in network information theory and coding for storage media. In 1989 he joined the Department of Electrical and Computer Engineering, Northeastern University. Dr. Salehi is the coauthor of the textbooks "Communication Systems Engineering", "Communication Systems with MATLAB", "Fundamentals of Communication Systems", and "Digital Communications". His main areas of research interest include information theory and coding.

Reviews

1. SIGNALS AND LINEAR SYSTEMS. Fourier Series. Fourier Transforms. Power and Energy. Lowpass Equivalent of Bandpass Signals. 2. RANDOM PROCESSES. Generation of Random Variables. Gaussian and Gauss-Markov Processes. Power Spectrum of Random Processes. Linear Filtering of Random Processes. Lowpass and Bandpass Processes. Monte Carlo Simulation of Digital Communication Systems. 3. ANALOG MODULATION. Amplitude Modulation (AM). Demodulation of AM Signals. Angle Modulation. 4. ANALOG-TO-DIGITAL CONVERSION. Measure of Information. Quantization. 5. BASEBAND DIGITAL TRANSMISSION. Binary Signal Transmission. Multiamplitude Signal Transmission. Multidimensional Signals. 6. TRANSMISSION THROUGH BANDLIMITED CHANNELS. The Power Spectrum of a Digital PAM Signal. Characterization of Bandlimited Channels. Characterization of Intersymbol Interference. System Design for Bandlimited Channels. Linear Equalizers. Nonlinear Equalizers. 7. DIGITAL TRANSMISSION VIA CARRIER MODULATION. Carrier-Amplitude Modulation. Carrier-Phase Modulation. Quadrature Amplitude Modulation. Carrier-Frequency Modulation. Synchronization in Communication Systems. 8. MULTICARRIER MODULATION AND OFDM. Generation of an OFDM Signal. Demodulation of OFDM Signals. Use of a Cyclic Prefix to Eliminate Channel Dispersion. Spectral Characteristics of OFDM Signals. Peak-to-Average Power Ratio in OFDM Systems. 9. TRANSMISSION THROUGH WIRELESS CHANNELS. Channel Models for Time-Variant Multipath Channels. Binary Modulation in Rayleigh Fading Channel. 10. CHANNEL CAPACITY AND CODING. Channel Model and Channel Capacity. Channel Coding. Turbo Codes and Iterative Decoding. Low-Density Parity Check Codes. 11. MULTIPLE ANTENNA SYSTEMS. Channel Models for Multiple Antenna Systems. Transmission over Slow Fading Frequency Nonselective Channels. Capacity of MIMO Channels. Space-Time Codes for MIMO Systems. 12. SPREAD SPECTRUM COMMUNICATION SYSTEMS. Direct-Sequence Spread Spectrum Systems. Generation of PN Sequences. Frequency-Hopped Spread Spectrum.