To view prices and purchase online, please login or create an account now.



Stochastic Physics and Climate Modelling

Hardback

Main Details

Title Stochastic Physics and Climate Modelling
Authors and Contributors      Edited by Tim Palmer
Edited by Paul Williams
Physical Properties
Format:Hardback
Pages:496
Dimensions(mm): Height 254,Width 80
Category/GenreMeteorology and climatology
ISBN/Barcode 9780521761055
ClassificationsDewey:551.6011
Audience
Professional & Vocational
Illustrations 2 Tables, unspecified; 3 Tables, black and white; 53 Halftones, unspecified; 77 Halftones, black and white; 65 Line drawings, black and white; 2 Tables, unspecified; 3 Tables, black and white; 53 Halftones, unspecified; 77 Halftones, black and white; 65 L

Publishing Details

Publisher Cambridge University Press
Imprint Cambridge University Press
Publication Date 3 December 2009
Publication Country United Kingdom

Description

This is the first book to promote the use of stochastic, or random, processes to understand, model and predict our climate system. One of the most important applications of this technique is in the representation of comprehensive climate models of processes which, although crucial, are too small or fast to be explicitly modelled. The book shows how stochastic methods can lead to improvements in climate simulation and prediction, compared with more conventional bulk-formula parameterization procedures. Beginning with expositions of the relevant mathematical theory, the book moves on to describe numerous practical applications. It covers the complete range of time scales of climate variability, from seasonal to decadal, centennial, and millennial. With contributions from leading experts in climate physics, this book is invaluable to anyone working on climate models, including graduate students and researchers in the atmospheric and oceanic sciences, numerical weather forecasting, climate prediction, climate modelling, and climate change.

Author Biography

Tim Palmer is Head of the Probability Forecasting and Diagnostics Division at the European Centre for Medium-Range Weather Forecasts (ECMWF). He has won the Royal Society Esso Energy Award, the Royal Meteorological Society Adrian Gill Prize, and the American Meteorological Society Jule Charney Award. He is a fellow of the Royal Society, the Royal Meteorological Society, the American Meteorological Society, and Academia Europaea. He is a lead author of the Intergovernmental Panel on Climate Change (IPCC), co-chair of the Scientific Steering Group of the UN World Meteorological Organisation's Climate Variability and Predictability (CLIVAR) project, and coordinator of two European Union climate prediction projects (PROVOST and DEMETER). He has had numerous appearances on radio and TV, in relation to weather, climate and chaos theory, and has co-edited another book with Cambridge University Press - Predictability of Weather and Climate - in 2006. Paul Williams is a Research Fellow at the Department of Meteorology, University of Reading. He has won the Royal Astronomical Society Blackwell Prize in (2004) and the Royal Meteorological Society Rupert Ford Award (2005), and has received a prestigious Crucible Fellowship from the National Endowment for Science, Technology and the Arts (2007). He was the lead author of a climate change report commissioned and published by the European Parliament (2004). He is a Fellow of the Royal Meteorological Society, the Institute of Physics, and the Royal Astronomical Society. His research findings have been reported widely in the media, including feature articles in New Scientist and the Financial Times, and a panel discussion on BBC Radio 4.

Reviews

'With contributions from leading experts in climate physics, this book is invaluable to anyone working on climate models, including graduate students and researchers in the atmospheric and oceanic sciences, numerical weather forecasting, climate prediction, climate modelling and climate change.' The Eggs EGU Newsletter (the-eggs.org) '[This] book does a very good job of reviewing the state of the art of stochastic physics in climate modeling, and can be wholeheartedly recommended to any researcher seriously interested in that line of research.' Philip Sura, Bulletin of the American Meteorological Society 'Stochastic Physics and Climate Modelling is a timely thought-provoking book on one of the most challenging and paradoxical scientific issues: stochastic physics may well be the key to substantial progress being made in climate change modelling and prediction, and to resolve the large uncertainties that exist. It is therefore a must for anyone having a keen interest in climate modelling, especially graduate students and researchers involved in climate studies.' Nonlinear Processes in Geophysics