|
Bose-Einstein Condensation of Excitons and Biexcitons: And Coherent Nonlinear Optics with Excitons
Hardback
Main Details
Title |
Bose-Einstein Condensation of Excitons and Biexcitons: And Coherent Nonlinear Optics with Excitons
|
Authors and Contributors |
By (author) S. A. Moskalenko
|
|
By (author) D. W. Snoke
|
Physical Properties |
Format:Hardback | Pages:430 | Dimensions(mm): Height 263,Width 185 |
|
ISBN/Barcode |
9780521580991
|
Classifications | Dewey:530.416 |
---|
Audience | Professional & Vocational | |
Illustrations |
4 Tables, unspecified; 111 Line drawings, unspecified
|
|
Publishing Details |
Publisher |
Cambridge University Press
|
Imprint |
Cambridge University Press
|
Publication Date |
28 February 2000 |
Publication Country |
United Kingdom
|
Description
Bose-Einstein condensation of excitons is a unique effect in which the electronic states of a solid can self-organize to acquire quantum phase coherence. The phenomenon is closely linked to Bose-Einstein condensation in other systems such as liquid helium and laser-cooled atomic gases. Covering theoretical aspects as well as recent experimental work, the book provides a comprehensive survey of the field. After introducing the relevant basic physics of excitons, the authors discuss exciton-phonon interactions as well as the behavior of biexcitons. They also cover exciton phase-transitions and give particular attention to nonlinear optical effects including the optical Stark effect and chaos in excitonic systems. The thermodynamics of equilibrium, quasiequilibrium, and nonequilibrium systems are examined in detail. Throughout, the authors interweave theoretical and experimental results. The book will be of great interest to graduate students and researchers in semiconductor and superconductor physics, quantum optics, and atomic physics.
Reviews"...a most useful text by two physicists each of whom has made substantial contributions to the field of Bose-Einstein condensation...a thorough introduction to all aspects of condensed matter physics, combined with much of the formal theory required to understand a wide range of experiments...Any scientist interested in establishing a more constructive dialogue with the science and technology studies community would be well-advised to read [this work]." Physics Today
|